What happens to reef fish after coral bleaching?

by Adel Heenan

For the past month, researchers aboard the NOAA Ship Hi‘ialakai have been navigating across the Pacific Ocean to survey coral reef ecosystems at remote Wake Atoll and the Mariana Archipelago. This expedition includes additional surveys at Jarvis Island, in the Pacific Remote Islands Marine National Monument, to assess the reef condition and degree of recovery from a catastrophic coral bleaching event in 2014-2015.


Jarvis Island is located in the central Pacific Ocean, close to the equator, and is a small island in the direct path of a deep current that flows east (Figure 1). Because of it’s position right on the equator and the strong currents hitting the island, Jarvis sits in the middle of a major upwelling zone—where cold nutrient rich water is drawn up from the deep. This water fertilizes the whole area, elevating nutrient levels and productivity in the reef ecosystem (Gove et al., 2006). As a result, Jarvis supports exceptionally high biomass of planktivorous and piscivorous fishes (Williams et al., 2015).

Because it is unpopulated and extremely remote, Jarvis provides an important reference point and opportunity to understand the natural structure, function, and variation in coral reef ecosystems. The island also offers a natural laboratory in which the effects of ocean warming can be assessed in the absence of stressors that impact coral reefs where humans are present (e.g., fishing or land-based sources of pollution).

El Niño, La Niña and the global coral bleaching event of 2014-2015
The Equatorial Pacific upwelling at Jarvis alternates between warm El Niño years, when upwelling is weak and oceanic productivity low, and cold La Niña years where upwelling is strong and productivity is high (Gove et al., 2006). Unusually warm sea surface temperatures, and a strong El Niño in 2014-2015, triggered the third recorded global coral bleaching event. At Jarvis, these warmer waters led to widespread coral bleaching and mortality. High sea surface temperatures in 2015 also impacted upwelling at Jarvis, as evidenced by a decrease in the primary productivity around the island.

Teams from the Coral Reef Ecosystem Program recently completed ecological monitoring at Jarvis from April 2–5, 2017. They collected data at 28 stationary point count sites (Figure 2) this year, 30 in 2016, 62 in 2015, 42 in 2012, and 30 in 2010.

FIG2_SPC

Figure 2. The stationary point count method is used to monitor the fish assemblage and benthic communities at the Rapid Ecological Assessment (REA) sites.

Main Observations
Fish biomass tended to be highest on the western side of the island where equatorial upwelling occurs (Figure 3). In 2016, we observed somewhat reduced total fish and total planktivore biomass (Figure 4), but this reduction was within the normal range of observed variability.

There were some significant reductions observed for individual species in 2016. These reductions were noticeable across multiple trophic groups, for instance the planktivorous Whitley’s fusilier (Luzonichthys whitleyi), Olive anthias (Pseudanthias olivaceus), Dark-banded fusilier (Pterocaesio tile), the piscivorous Island trevally (Carangoides orthogrammus), and the coral-dwelling Arc-eyed hawkfish (Paracirrhites arcatus) which is strongly associated with Pocillopora coral heads. Some of these species had returned to previous ranges by 2017, but others remain depleted (Figure 5).

FIG5_FishBiomass

Figure 5. Mean species biomass (± standard error) per survey year at Jarvis.

Very high levels of coral mortality were evident in 2016 surveys and coral cover remained low in 2017. Notably, macroalgal cover increased in 2017, approximately by the amount of coral cover lost in 2016 (Figure 6).

FIG6_PercentCover

Figure 6. Mean percentage cover estimates (± standard error) of benthic habitat per survey year at Jarvis. Data shown for Hard Coral (top, red); macrolagae (middle, green) and CCA: crustose coralline algae (bottom, orange). Note: no benthic data are available for 2008 as we began collected rapid visual estimates of these benthic functional groups in 2010.

Whether this reduction in specific planktivore, piscivore, and live coral-dwelling fish species is a widespread and long-standing shift in the fish assemblages at Jarvis will be the subject of forthcoming research. It seems plausible that they reflect impacts of a prolonged period of reduced food availability and changes to preferred habitat due to the anomalous warm sea conditions in 2014–2015. Our teams will return to Jarvis in 2018 to conduct another assessment in an attempt to answer some of these questions.

FIG7_shark

An emaciated grey reef shark (Carcharhinus amblyrhynchus) observed during a 2017 fish survey. (Photo: NOAA Fisheries/Adel Heenan)

Additional detail on survey methods and sampling design are available in the full monitoring brief: Jarvis Island time trends 2008-2017.

References
Gove J. et al. (2006) Temporal variability of current-driven upwelling at Jarvis Island. J Geo Res: Oceans 111, 1-10, doi: 10.1029/2005JC003161.
Williams I. et al. (2015) Human, oceanographic and habitat drivers of central and western Pacific coral reef fish assemblages. PLoS 10: e0120516, doi: 10.1371/journal.pone.0120516.

 

Coral reef monitoring surveys completed around the islands and atolls of American Samoa

By Bernardo Vargas-Ángel
Operating area of the HA-15-01 ASRAMP Legs II and III.

Operating area of the HA-15-01 ASRAMP Legs II and III.

With work complete in the U.S. territory of American Samoa, the NOAA Ship Hi‘ialakai stopped in the port of Pago Pago Harbor for a short pause between Legs III and IV of PIFSC cruise HA-15-01. Led by the PIFSC Coral Reef Ecosystem Division (CRED), this mission marks the seventh monitoring cruise in the American Samoa region by PIFSC staff and partner agencies since 2002.

Activities to monitor the coral reef ecosystems of American Samoa began on February 17 and concluded on March 30, completing Leg I and comprising Legs II and III of this longer Pacific Reef Assessment and Monitoring Program (Pacific RAMP) expedition. Around Tutuila, Aunu‘u, Ofu-Olosega, Swains, and Ta‘u Islands, and Rose Atoll, the CRED scientists conducted ecosystem surveys of fishes, benthic and coral communities, and microbes, along with the deployment of oceanographic instruments and biological installations.

Shallow coral reef communities at Rose Atoll, conspicuously dominated by the pink-colored encrusting coralline algae.

Shallow coral reef communities at Rose Atoll, conspicuously dominated by the pink-colored encrusting coralline algae.

A pair of the reticulated butterflyfish (Chaetodon reticulatus) at Swains Island.

A pair of the reticulated butterflyfish (Chaetodon reticulatus) at Swains Island.

At Rapid Ecological Assessment (REA) sites, surveys for reef fishes and benthic coral communities documented the richness, abundance, density, and sizes of the biota and assemblages as well as the percent composition of bottom-dwelling organisms and the health conditions of coral colonies. Broad-scale towed-diver surveys recorded observational data on large-bodied fishes (>50 cm total length), percent composition of the seafloor, conspicuous macroinvertebrates, and coral stress.

In addition, teams studied microbial communities, diversity of cryptic invertebrates, water temperature, salinity, and carbonate chemistry. They are also working to assess the potential early effects of ocean acidification on cryptobiota (e.g. small, hidden organisms) and the rates of reef carbonate deposition, bioerosion, and coral calcification.

Across the Territory of American Samoa, this mission completed more than 60 towed-diver surveys totaling more than 130 km of coastline, 325 fish surveys, and 180 benthic surveys. The Ocean and Climate Change team deployed four climate monitoring stations around Tutuila, and four around Ofu-Olosega and Ta‘u, containing arrays of subsurface temperature recorders (STRs), calcification accretion units (CAUs), autonomous reef monitoring structures (ARMS), and bioersion monitoring units (BMUs). Critical findings during this mission included observations of coral bleaching, local warm water temperatures, and the number and distribution of corallivore crown-of-thorns sea stars (COTS).

Bleached and partly dead staghorn Acropora outside Fagatele Bay, Tutuila, American Samoa.

Bleached and partly dead staghorn Acropora outside Fagatele Bay, Tutuila, American Samoa.

Bleaching of scleractinian corals, averaging 10% of colonies, was reported in shallow (3-6 m) reef habitats of Tutuila Island—particularly within Fagatele and Fagasa Bays—as well as the southwest coast of the island and primarily affected species of branching and table Acropora, Isopora, Montastrea, Porties, and Pocillopora. Although bleaching conditions did not appear to be widespread, current NOAA Coral Reef Watch forecasts predict persistent warm conditions, which could potentially result in more severe and extensive coral bleaching across the region. CRED scientists recorded only occasional sightings of COTS and their feeding scars on corals, despite the ongoing outbreak conditions reported by staff of the National Park Service and the National Marine Sanctuary of American Samoa. In contrast to other regions where COTS outbreaks have been reported by CRED scientists, including Guam, the Commonwealth of the Northern Mariana Islands, and Kingman Reef, it appears that in American Samoa, the sea stars prefer to feed at night and hide under ledges and overhangs during the day, making them inconspicuous during daylight surveys.

Preliminary results from surveys conducted by CRED fish team divers, during PIFSC cruise HA-15-01, are provided in the fish monitoring brief below.

Pacific Reef Assessment and Monitoring Program
Fish monitoring brief: American Samoa 2015

By Adel Heenan

About this summary brief
The purpose of this summary brief is to outline the most recent survey efforts conducted by the Coral Reef Ecosystem Division (CRED) of the NOAA Pacific Islands Fisheries Science Center as part of the long-term Pacific Reef Assessment and Monitoring Program (Pacific RAMP). More detailed survey results will be available in a forthcoming status report.

Sampling effort

  • Ecological monitoring took place in American Samoa from February 15 2015 to March 30 2015.
  • Data were collected at 338 sites. Surveys were conducted at Ofu and Olosega (n=52), Rose (n=47), Swains (n=32), Tau (n=46) and Tutuila (n=162).
  • At each site, the fish assemblage was surveyed by underwater visual census and the benthic community was assessed.

Overview of data collected
Primary consumers include herbivores (which eat plants) and detritivores (which bottom feed on detritus), and secondary consumers are largely omnivores (which mostly eat a variety of fishes and invertebrates) and invertivores (which eat invertebrates).

Figure 1. Mean total fish biomass at sites surveyed.

Figure 1. Mean total fish biomass at sites surveyed.

Figure 2. Mean hard coral cover at sites surveyed.

Figure 2. Mean hard coral cover at sites surveyed.

Spatial sample design
Survey site locations are randomly selected using a depth-stratified design. During cruise planning and the cruise itself, logistic and weather conditions factor into the allocation of monitoring effort around sectors of each island or atoll. The geographic coordinates of sample sites are then randomly drawn from a map of the area of target habitat per study area. The target habitat is hard-bottom reef, the study area is typically an island or atoll, or in the case of larger islands, sectors per island, and the depth strata are shallow (0-6 m), mid (6-18 m), and deep (18-30 m).

Sampling methods
A pair of divers surveys the fish assemblage at each site using a stationary-point-count method. Each diver identifies, enumerates, and estimates the total length of fishes within a visually estimated 15-m-diameter cylinder with the diver stationed in the center. These data are used to calculate fish biomass per unit area (g m-2) for each species. Mean biomass estimates per island are calculated by weighting averages by the area per strata. Island-scale estimates presented here represent only the areas surveyed during this cruise. For gaps or areas not surveyed during this cruise, data from this and other survey efforts will generally be pooled to improve island-scale estimates.

Figure 3. Mean consumer group fish biomass (± standard error). Primary consumers are herbivores and detritivores, and secondary consumers are omnivores and invertivores.

Figure 3. Mean consumer group fish biomass (± standard error). Primary consumers are herbivores and detritivores, and secondary consumers are omnivores and invertivores.

Figure 4. Mean fish biomass per size class (± standard error). Fish measured by total length (TL) in centimeters (cm).

Figure 4. Mean fish biomass per size class (± standard error). Fish measured by total length (TL) in centimeters (cm).

Each diver also conducts a rapid visual assessment of reef composition, by estimating the percentage cover of major benthic functional groups (encrusting algae, macroalgae, hard corals, turf algae and soft corals) in each cylinder. Divers also estimate the complexity of the surface of the reef structure, and they take photos along a transect at each site that are archived to allow for future analysis.

About the monitoring program
Pacific RAMP forms a key part of the National Coral Reef Monitoring Plan of NOAA’s Coral Reef Conservation Program (CRCP), providing integrated, consistent, and comparable data across U.S. Pacific islands and atolls. CRCP monitoring efforts have these aims:

  • Document the status of reef species of ecological and economic importance
  • Track and assess changes in reef communities in response to environmental stressors or human activities
  • Evaluate the effectiveness of specific management strategies and identify actions for future and adaptive responses

In addition to the fish community surveys outlined here, Pacific RAMP efforts include interdisciplinary monitoring of oceanographic conditions, coral reef habitat assessments and mapping. Most data are available upon request.

For more information
Coral Reef Conservation Program
Pacific Islands Fisheries Science Center
CRED publications
CRED monitoring reports
CRED fish team
Fish team lead and fish survey data requests: ivor.williams@noaa.gov, adel.heenan@noaa.gov

Update from the Mariana Archipelago: monitoring cruise completes work in the southern islands

By Bernardo Vargas-Ángel
The NOAA Ship Hi`ialakai, seen off the coast of Anatahan, a northern island in the Commonwealth of the Northern Mariana Islands, during a previous monitoring cruise in the Mariana Archipelago in May 2009. NOAA photo by Bernardo Vargas-Ángel

The NOAA Ship Hi`ialakai, seen off the coast of Anatahan, a northern island in the Commonwealth of the Northern Mariana Islands, from a small boat during a previous monitoring cruise in the Mariana Archipelago in May 2009. NOAA photo by Bernardo Vargas-Ángel

On April 17, the NOAA Ship Hi`ialakai departed Saipan Harbor and began Leg III of the PIFSC cruise HA-14-01 with a few more days of monitoring operations around Saipan before transiting to the island of Sarigan. With work essentially complete in the southern islands of the Mariana Archipelago, the Hi`ialakai had been in port in Saipan Harbor for a short, 3-day pause between legs of this Pacific Reef Assessment and Monitoring Program (Pacific RAMP) expedition. Activities to monitor coral reef ecosystems of the Commonwealth of the Northern Mariana Islands (CNMI) began on April 5 during Leg II of this cruise and work around Guam took place on March 25–April 4, primarily during Leg I. Led by the PIFSC Coral Reef Ecosystem Division (CRED), this mission marks the 6th monitoring cruise in Guam and the CNMI by staff from PIFSC and partner agencies since 2003.

Around Guam, Rota, Aguijan, Tinian, and Saipan Islands, CRED scientists on March 25–April 18 conducted ecosystem surveys of fishes, benthic and coral communities, and microbes and deployed oceanographic instruments and biological installations. During Leg III, which is expected to conclude on May 6, CRED staff will conduct small-boat operations for coral reef ecosystem monitoring at the following northern islands and banks: Sarigan, Zealandia Bank, Guguan, Alamagan, Pagan, Agrihan, Asuncion, Maug, Supply Reef, and Farallon de Pajaros (or Uracas).

On a reef off the coast of Rota Island, divers conduct belt-transect surveys of the benthos on April 8. NOAA photo by Bernardo Vargas-Ángel

On a reef off the coast of Rota Island, divers conduct a belt-transect survey of the benthos on April 8 during the PIFSC cruise HA-14-01, the 6th expedition in the Marina Archipelago since 2003 for the Pacific Reef Assessment and Monitoring Program, which is led by the PIFSC Coral Reef Ecosystem Division. NOAA photo by Bernardo Vargas-Ángel

A diver on April 13 collects digital images of reef benthos along a transect at a Climate Monitoring Station off the cost of Saipan. NOAA photo

A diver on April 13 collects digital still photographs of the reef benthos along a transect at a Climate Monitoring Station off the cost of Saipan. Such benthic images can be analyzed to characterize benthic habitat and estimate percent cover of key functional groups. NOAA photo

At Rapid Ecological Assessment (REA) sites, surveys for reef fishes document species richness, abundance, and sizes, and surveys of benthic and coral communities study the percent composition of bottom-dwelling organisms in addition to the densities, sizes, and health conditions of coral colonies. During broad-scale towed-diver surveys, divers record observational data on large-bodied fishes (>50 cm total length), percent composition of the seafloor, coral stress, and conspicuous invertebrates. Studies of microbial communities document the diversity and abundance of bacteria and viruses and their interactions with coral reefs.

This mission also includes studies of the diversity of cryptic invertebrates; collection of data on water temperature, salinity, carbonate chemistry, and other physical characteristics of coral reef environments; and assessment of the potential early effects of ocean acidification on cryptobiota (e.g., small, hidden organisms) and the rates of reef carbonate deposition and coral calcification.

Researchers of the PIFSC Coral Reef Ecosystem Division use trays, like the one in this photo taken on April 13, to sort the cryptic reef invertebrates that they collect from autonomous reef monitoring structures (ARMS) retrieved during this current cruise from the nearshore locations where they had been deployed in 2011 during the previous Pacific Reef Assessment and Monitoring Program expedition in the Mariana Archipelago. NOAA photo

Researchers of the PIFSC Coral Reef Ecosystem Division on April 13 use this tray and others to sort the cryptic reef invertebrates that they collect from the autonomous reef monitoring structures (ARMS) retrieved during this current cruise from the nearshore locations where they had been deployed in 2011 during the previous Pacific Reef Assessment and Monitoring Program expedition in the Mariana Archipelago. NOAA photo

Thus far across the 5 southern Mariana Islands, including work on April 17, CRED researchers during this cruise have completed 66 towed-diver surveys along a combined 130 km of coastline and, at REA sites, 153 fish surveys and 62 benthic surveys. The instrumentation team deployed 4 Climate Monitoring Stations around Guam and 3 stations around Saipan, with each station containing arrays of subsurface temperature recorders (STRs), calcification accretion units (CAUs), autonomous reef monitoring structures (ARMS), and bioersion monitoring units (BMUs). Overall, no notable changes in the structure of the fish and benthic communities can be reported at this time for the areas surveyed at Guam or in the southern CNMI, in comparison to survey results from the previous cruise in this region in 2011. Additionally, no widespread coral bleaching or outbreaks of coral diseases or corallivorous crown-of-thorns seastars (Acanthaster planci) were observed.

The final count: cruise for monitoring of effects of ocean and climate change in the Northwestern Hawaiian Islands completed

By Chip Young

Scientists from the PIFSC Coral Reef Ecosystem Division (CRED) recently completed a 17-day expedition to the Northwestern Hawaiian Islands, where they conducted coral reef monitoring surveys at Pearl and Hermes Atoll, Lisianski Island, and French Frigate Shoals. These 3 locations are part of the Papahānaumokuākea Marine National Monument and World Heritage Site, the third largest marine protected area on Earth and the largest conservation area in the United States.

This PIFSC research cruise (HA-13-05) aboard the NOAA Ship Hi`ialakai implemented a standardized set of methods for the measurement of fluctuations in the region’s coral reef ecosystems caused by global climate change. NOAA’s National Coral Reef Monitoring Plan (NCRMP) outlines the importance of monitoring changes in temperature and the chemical composition of ocean waters within which the coral reef ecosystems of the United States are found. Coral reefs are fragile biological systems that have been observed to live best in specific ranges of water temperatures and composition parameters. Changes in either of these ranges can cause a coral reef system to malfunction, through problematic processes that are familiar to much of the general public. Such processes, including coral bleaching (a result of increased ocean temperatures) and ocean acidification (a result of a drop in the ocean’s pH), affect the ability of corals and other reef organisms to calcify or “build their houses.” Other potential effects can occur, as well, such as shifts in biogeochemical cycles, shifts in species diversity, and changes in the ocean’s food web.

Jamison Gove and Chip Young of the PIFSC Coral Reef Ecosystem Division deploy oceanographic instrumentation on Sept. 13 at Lisianski Island as part of the recent research cruise to the Northwestern Hawaiian Islands. NOAA photo by Oliver Vetter

Jamison Gove and Chip Young of the PIFSC Coral Reef Ecosystem Division deploy oceanographic instrumentation on Sept. 13 at Lisianski Island as part of the recent research cruise to the Northwestern Hawaiian Islands. NOAA photo by Oliver Vetter

As part of the implementation of the NCRMP, CRED scientists on Sept. 3–19 deployed 16 arrays of temperature sensors along various reef systems, installing a total of 64 instruments at depths of 1–25 m. At its specific location on a reef, each sensor records the seawater temperature at the same time as other sensors, every 5 min, over a period of 3 years. The resulting product is a high-resolution picture of temperature variability of 16 different reef systems across space (across the archipelago and to a depth of 25 m) and time (3-year deployment of each sensor).

During the monitoring cruise earlier this month, 100 calcification accretion units (CAUs), like the one shown above, were installed in the Northwestern Hawaiian Islands by staff of the PIFSC Coral Reef Ecosystem Division. CAUs are used to measure not only net reef calcification rates but also species-specific recruitment rates and the percent cover of corals, crustose coralline algae, and fleshy algae. NOAA photo

During the monitoring cruise earlier this month, 100 calcification accretion units (CAUs), like the one shown above, were installed in the Northwestern Hawaiian Islands by staff of the PIFSC Coral Reef Ecosystem Division. CAUs are used to measure not only net reef calcification rates but also species-specific recruitment rates and the percent cover of corals, crustose coralline algae, and fleshy algae. NOAA photo

CRED scientists and partners also collected samples of seawater for chemical analysis, conducted hydrocasts with a conductivity-temperature-depth (CTD) instrument, and deployed installations designed to measure specific biological activities that can be affected by changes in the pH of a reef’s waters. Settling plates, known as calcification accretion units (CAUs), are used to measure net reef calcification rates, species-specific recruitment rates, and the percent cover of corals, crustose coralline algae, and fleshy algae. Bioerosion monitoring units (BMUs) are made up of precisely measured pieces of calcium carbonate, the material that makes up the skeletal structure of corals, and will provide a value for how much biological removal of reef structure is naturally present along the reef. Autonomous reef monitoring structures (ARMS) essentially act as “hotels” for cryptic biota living within the matrix of a reef ecosystem and provide a standard method for evaluation of the existing community of sessile and mobile organisms found on a reef.

Including work conducted during this cruise and the earlier PIFSC cruise SE-13-05 to Kure Atoll in July, CRED scientists have installed 100 CAUs, 50 BMUs, and 24 ARMS throughout the Northwestern Hawaiian Islands this year. Because monitoring activities associated with NCRMP are conducted on a triennial basis, CRED will return to these islands in 2016. At that time, researchers will retrieve and replace all instruments. NCRMP is a long-term project, and the goal of this work is to measure change over time. The results from this ongoing project will be available to help the managers of these remote islands monitor, evaluate, and predict the ecological effects of global climate change on the reefs of the Papahānaumokuākea Marine National Monument.